3.517 \(\int \frac{\tan ^2(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=109 \[ \frac{\tan (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{f (a+b)}-\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{f (a+b) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}} \]

[Out]

-((Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/((a +
 b)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) + (Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x])/((a + b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.117775, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {3196, 471, 426, 424} \[ \frac{\tan (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{f (a+b)}-\frac{\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{f (a+b) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/((a +
 b)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) + (Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x])/((a + b)*f)

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{\tan ^2(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2}{\left (1-x^2\right )^{3/2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{(a+b) f}\\ &=\frac{\sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{(a+b) f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}\\ &=-\frac{\sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{(a+b) f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}+\frac{\sqrt{a+b \sin ^2(e+f x)} \tan (e+f x)}{(a+b) f}\\ \end{align*}

Mathematica [A]  time = 0.393447, size = 100, normalized size = 0.92 \[ \frac{\sqrt{2} \tan (e+f x) (2 a-b \cos (2 (e+f x))+b)-2 a \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{2 f (a+b) \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(-2*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + Sqrt[2]*(2*a + b - b*Cos[2*(e + f*x)
])*Tan[e + f*x])/(2*(a + b)*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

Maple [B]  time = 2.065, size = 222, normalized size = 2. \begin{align*}{\frac{1}{ \left ( a+b \right ) \cos \left ( fx+e \right ) f} \left ( -\sqrt{-b \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}}b\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}+\sqrt{-b \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}} \left ( a+b \right ) \sin \left ( fx+e \right ) -a\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}\sqrt{-b \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) \right ){\frac{1}{\sqrt{- \left ( a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2} \right ) \left ( -1+\sin \left ( fx+e \right ) \right ) \left ( 1+\sin \left ( fx+e \right ) \right ) }}}{\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

(-(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b*sin(f*x+e)*cos(f*x+e)^2+(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1
/2)*(a+b)*sin(f*x+e)-a*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e
)^2)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2)))/(a+b)/(-(a+b*sin(f*x+e)^2)*(-1+sin(f*x+e))*(1+sin(f*x+e)))^(1
/2)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{2}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right )^{2}}{b \cos \left (f x + e\right )^{2} - a - b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-b*cos(f*x + e)^2 + a + b)*tan(f*x + e)^2/(b*cos(f*x + e)^2 - a - b), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{2}{\left (e + f x \right )}}{\sqrt{a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**2/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**2/sqrt(a + b*sin(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{2}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)